Student Name:

Date: \qquad

Contact Person Name:

Phone Number: \qquad

Simplifying, Substituting, and Solving

Objectives

- Simplify algebraic expressions
- Substitute values for variables in algebraic expressions
- Solve and check two-step equations

Authors:

Jason March, B.A.
Tim Wilson, B.A.

Editor:

Linda Shanks

Graphics:

Tim Wilson
Jason March
Eva McKendry

National PASS Center BOCES Geneseo Migrant Center 27 Lackawanna Avenue Mount Morris, NY 14510
(585) 658-7960
(585) 658-7969 (fax)
www.migrant.net/pass

BOARD OF COOPERATIVE EdUCATIONAL SERVICES

Developed by the National PASS Center under the leadership of the National PASS Coordinating Committee with funding from the Region 20 Education Service Center, San Antonio, Texas, as part of the Mathematics Achievement = Success (MAS) Migrant Education Program Consortium Incentive project. In addition, program support from the Opportunities for Success for Out-of-School Youth (OSY) Migrant Education Program Consortium Incentive project under the leadership of the Kansas Migrant Education Program.

In the last lesson, we became familiar with the concept of a variable as something that is not known. Variables sometimes behave as whole numbers do.

Example

Simplify the expression $3 a+2 a$.

Solution

Perhaps a picture will help us. Let's say that a is some weird object, for instance,

This means that $3 a$ is,

Now we'll add $3 a+2 a$

See, $3 a+2 a=5 a$, just as $3+2=5$

Example

Simplify the expression $5 x-2 x$

Solution

Now we're working with the variable x. Let's represent x with any object, say

This means,

Now, to show $5 x-2 x$, we simply take two x s away.

As we suspected, $5 x-2 x=3 x$, just as $5-2=3$. These two examples show that variables can be nice. So far, they are behaving just as whole numbers do, except they are a letter instead of a number. Let's look at the next example.

Example

Find the distance around the triangle in terms of r.

Solution

The distance around the triangle is the sum of the lengths of the sides. That is,

$$
\begin{gathered}
(r+3)+(2 r+4)+(2 r) \\
r+3+2 r+4+2 r
\end{gathered}
$$

This expression has five terms.

- A term is anything being separated by addition or subtraction.

For example,

$5 x$	1 term	The term is $5 x$.
$2 a+9$	2 terms	They are $2 a$ and 9.
$4 b-12 a+8$	3 terms	They are $4 b, 12 a, 8$
$16 a b+2 a-3 b+7$	4 terms	$16 a b, 2 a, 3 b, 7$

To simplify $r+3+2 r+4+2 r$, we need to combine like terms, or the terms that are similar to each other. In this example, there are terms with the variable r and terms with no variable.

This expression has five terms. We must combine the r-terms

If you do not see a number in front of a variable, assume there is a 1 there

Now you may be wondering, "what next?" The answer is, we're done simplifying. Terms with letters do not combine with terms that have only numbers.

Now, we combine the number terms.

$$
=5 r+7
$$

From our work with integers, we know

You can't! It just doesn't make any sense. That's why $5 r+7$ is in simplest form, even though there are two terms.

In summary, combine letters with letters and numbers with numbers.

Example

Simplify $4 n+3-n-1$

Solution

Remember, letters with letters and numbers with numbers.
First, we combine our like terms. Always include the sign to the left of each term.

In the previous lesson, each equation could be solved with one operation. For example, the equation

$$
7=3+x
$$

was solved by subtracting 3 from both sides. Then, you were done. Most of the time in algebra, however, equations are a little more complicated and require more than one step to solve.

Example

Solve for p.

$$
2 p+3=11
$$

Solution

We can use what we learned from the last lesson. In order to solve for a variable, we need to use inverse operations to get the variable by itself. Which operation should we use first? There are two operations to be undone,

We will undo the addition first by subtracting 3 from both sides.

$$
\begin{array}{r}
2 p+3 \\
-3 \\
2 p
\end{array}|=| \begin{aligned}
& 11 \\
& \frac{-3}{8}
\end{aligned}
$$

$$
\begin{array}{r}
2 p+3 \\
-3 \\
\frac{2 p}{2} \\
p
\end{array}|=| \begin{aligned}
& \frac{11}{\frac{-3}{8}}
\end{aligned}
$$

Our final step is to check our answer.
Since $2 p=2 \cdot p$, we must undo multiplication and divide by two.

Check: $p=4$

$$
\begin{aligned}
2 p+3 & =11 \\
2()+3 & =11 \\
2(4)+3 & =11 \\
8+3 & =11 \\
11 & =11
\end{aligned}
$$

Algorithm

To solve for a variable:

1. Perform addition or subtraction.
2. Perform multiplication or division.

$$
\begin{array}{rr}
3+2 y \\
-3 & \frac{2}{2} y \\
y
\end{array}|=| \begin{aligned}
& 9 \\
& -3 \\
& \frac{6}{2} \\
& 3
\end{aligned}
$$

Example

Solve for γ.

$$
7-2 y=13
$$

Solution

Our variable is y. We need to get it all by itself.

$-7-2 y$						
-7	$-2 y$					
-2						
y		$	=	$	13	
:---	:---					
-7	Subtract 7 from both sides.					
-2	Divide both sides by -2.					
-2						

Check: $y=-3$

$$
\begin{aligned}
7-2 y & =13 \\
7-2() & =13 \\
7-2(-3) & =13 \\
7+6 & =13 \\
13 & =13
\end{aligned}
$$

Example

Solve for t.

$$
15=2 t+5
$$

Solution

$$
\begin{gathered}
15 \\
-5 \\
\frac{10}{2} \\
2 \\
5
\end{gathered}|=| \begin{aligned}
& 2 t+5 \\
& \\
& -5 \\
& -2 t \\
& 2
\end{aligned}
$$

Check: $5=t$
$15=2 t+5$

$15=10+5$
$15=15$

Example

Solve for $s . \quad 94=-18-2 s$

Solution

$$
\begin{aligned}
& 94=-18-2 s \\
& 94=-18-2(\quad) \\
& 94=-18-2(-56) \\
& 94=-18+112 \\
& 94=94
\end{aligned}
$$

Example

Solve for $n . \quad 3 n=4 n+7$

Solution

Now we have terms with variables on both sides of the equals sign. We need to get the variable on one side of the equal sign.

Subtract $4 n$ from both sides.
Since $-n$ is really $-1 \cdot n$, we will undo multiplication and divide by -1 on both sides.

Check: $n=-7$

$$
\begin{aligned}
3 n & =4 n+7 \\
3() & =4()+7 \\
3(-7) & =4(-7)+7 \\
-21 & =-28+7 \\
-21 & =-21
\end{aligned}
$$

This check requires us to work on both sides of the equals sign at once. We know that our answer is correct, because the numbers at the end are the same.

Example

Solve for $j . \quad \frac{4}{j}=2$

Solution

Remember that we must multiply by the denominator of a fraction to undo it. This means that we will start by multiplying both sides by j.

$$
j \cdot \frac{4}{j}|=| \begin{array}{ll}
2 \cdot j & \text { Check: } 2=j \\
\frac{4}{2} & =\left\lvert\, \begin{array}{ll}
\frac{4}{j}=2 \\
2 \\
2 j & \frac{4}{()}=2 \\
2 & \frac{4}{(2)}=2 \\
j & 2=2
\end{array}\right.
\end{array}
$$

3. Solve for each variable and check.
a) $4 n+2=34$
c) $-n-6=50$
d) $2=6 x-10$
e) $\quad \frac{c}{2}+3=7$
f) $4=-2 v-10$
g) $\quad 25 g-17=183$
h) $3 n+2=2 n-1$
i) $\quad 4=3 x-8$
j) $\frac{15}{x}=3$

Sometimes you will be given equations with more than one variable, and you will be asked to substitute a number for one of the variables.

Example

In the equation $y=-8 x+3$, find the value of y when $x=1$.

Solution

To answer this question, we need to substitute the value 1 in for x.

$$
\begin{array}{ll}
y=-8 x+3 & \\
y=-8()+3 & \\
y=-8(1)+3 & \\
y=-8 \text { Substitute } 1 \text { for } x . \\
y=-8+3 &
\end{array}
$$

Example

If $m=4$ and $a=5$, find the value of y in the equation $y=4 m+a^{2}$.

Solution

We must substitute 4 for m and 5 for a.

$$
\begin{aligned}
& y=4 m+a^{2} \\
& y=4()+a^{2} \\
& y=4(4)+a^{2} \\
& y=4(4)+()^{2} \\
& y=4(4)+(5)^{2} \\
& y=4(4)+25 \\
& y=16+25 \\
& y=41
\end{aligned}
$$

Example

For the equation $d=r t$, find d when $r=25$ and $t=6$

Solution

Remember, when letters are together with no signs in between them, they are being multiplied.
$d=r t$ really means
$d=r \cdot t$
Now we substitute 25 for r, and 6 for t.
$d=r \cdot t$
$d=() \cdot()$
$d=(25) \cdot(6)$
$d=150$

4. When $z=2$, find the value of $4 z-3$.
5. When $h=5$ and $a=2$, find $3 h+h a$.
6. When $x=3$, what is the value of $\frac{6}{x^{2}}$?
7. If $a=-12$, simplify $a^{2}+5 a-24$.
8. Is the equation $a^{2}+b^{2}=c^{2}$ true when $a=1, b=2$, and $c=3$?

ZReview

1. Highlight each step of the "To solve for a variable" Algorithm.
2. Highlight the Objectives.
3. Write one question you would like to ask your mentor, or one new thing you learned in this lesson.

Practice Problems
 Math On the Move Lesson 12

Directions: Write your answers in your math journal. Label this exercise Math On the Move - Lesson 12, Set A and Set B.

Set A

1. Simplify each algebraic expression
a) $2 r+4 r-r$
b) $7 a+1-2 a+2$
c) $4 x+y-3 x+2 y$
d) $\quad h-4 h+2-3$
2. Solve for each variable and check.
a) $6 x+2 x=32$
b) $12 y+2=26$
c) $2=\frac{10}{t}$
d) $\quad 8 p=7 p-1$
e) $\quad-2 k-4=-30$
3. When $p=12$, what is the value of $2 p+11 ?$
4. If $a=7$ and $d=-6$, how much is $2 a+4 d$?
5. In the equation $d=b^{2}-4 a c$, find d when $b=9, a=2$ and $c=3$

Set B

1. Here's an equation to solve that will require more than two steps!

Solve for $x . \quad 3 x-4=x+2$
2. Simplify the following expression. (Hint: Simplify the top first.)

$$
\frac{3 a+2-2 a-2}{a}
$$

$\frac{\text { ANSWERS TO }}{\int T T T Y \text { TRY IT }}$

1. a) $7 m$
b) $2 x$
c) a
d) $11 w-4$
e) $8 s$
f) $10 z+4$
g) $3 m+3$
2. $4 x+2$
3.

a) $n=8$
b) $a=8$
c) $n=-56$
d) $x=2$
e) $c=8$
f) $v=-7$
g) $g=8$
h) $n=-3$
i) $x=4$
j) $x=5$
4. $4 z-3=4(2)-3=5$
5. $3 h+h a=3(5)+(5)(2)=25$
6. $\frac{6}{x^{2}}=\frac{6}{3^{2}}=\frac{6}{9}=\frac{2}{3}$
7.
$a^{2}+5 a-24$
$=(-12)^{2}+5(-12)-24$
$=144-60-24$
$=60$
$a^{2}+b^{2}=c^{2}$
8. No
$1^{2}+2^{2}=3^{2}$
$1+4=9$
$5 \neq 9$

NOTES

